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Introduction
Natural convection in horizontal porous annuli has a wide variety of
technological applications such as the insulation of an aircraft cabin or
horizontal pipes, cryogenics, the storage of thermal energy, and underground
cable systems, to mention just a few. The case considered here, probably of the
most practical significance, is one in which the cylinders’ surfaces are
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Nomenclature
a = scale factor in bipolar co-ordinates,

sinhαi
e = vertical distance between the

cylinders’ centres
g = gravitational acceleration
Nu = global Nusselt number
Nα, Nβ = number of grid points in the α and

β directions
Q = total heat flow in the annular

region
r = radius
R = radius ratio
Ra = Rayleigh number
t = dimensionless time
T = dimensionless temperature,

(T̂ – T̂o)/(T̂i – T̂o)
T̂ = temperature

Greek symbols
α, β = bipolar coordinates
ε = eccentricity, e/(ro – ri)
κ = permeability of the medium
λeq = equivalent thermal conductivity of

the medium
ν = kinematic viscosity of the fluid
ξ = thermal expansion coefficient of

the fluid
(ρc)f = heat capacity of the fluid
ψ = dimensionless stream function

Subscripts
i = inner cylinder
o = outer cylinder
i, j = location in the grid
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impermeable and maintained at constant uniform temperatures, with the inner
temperature being higher than the outer. As a result of the temperature
difference, buoyancy-driven flow is induced in the medium.

The phenomenology of the problem can be pictured as follows. When the
temperature difference between the walls of the two cylinders is small, the fluid
motion is two-dimensional and consists of two symmetrical counter-rotating
cells, one in each half of the annulus. As the temperature difference between the
two cylinders increased so does the intensity of the convective phenomena, and
the isotherms, which initially were concentric, start to become distorted in the
upper part of the annulus. In the region located beneath the hot inner cylinder,
the isotherms get closer to the wall creating a stagnant region in which the heat
transfer takes place largely by conduction. When the thermal field is
sufficiently distorted an instability appears in the upper part of the annulus
under the form of either multicellular two-dimensional patterns or three-
dimensional time-dependent structures. It is not yet clear which type of
instabilities will occur for a given Rayleigh number and geometrical
parameters, but the three-dimensional motion will eventually prevail in the
layer if the temperature difference in the annulus is increased sufficiently. As
long as the flow remains two-dimensional the problem is dependent on two
parameters: the radius ratio R and the Darcy-Rayleigh number Ra.

The case of concentric cylinders has received the most attention in the
literature. Caltagirone[1] used the Christiansen effect to visualize the isotherms
in an annulus of radius ratio R = 2, and determined experimental Nusselt
numbers based on temperature measurements of the thermal field. At high
Rayleigh numbers, the flow was reported to have changed to a three-
dimensional oscillatory motion, partially confirmed by a finite element
simulation, which led the author to conclude that multicellular two-dimensional
structures do not exist. In the same study, the equations governing the two-
dimensional convective motion were solved using finite differences, but owing
to an insufficient number of grid points Caltagirone was unable to obtain other
flow regimes in addition to the bicellular one.

Fukuda et al.[2] obtained three-dimensional results using the finite difference
method for an inclined annulus. However, the results could not be extended to
the horizontal case owing to the presence of the component of the gravitational
force in the axial direction of the annulus which is not present in the horizontal
case. Later, Rao et al.[3,4] studied numerically the horizontal annulus in both
two and three dimensions using the Galerkin method. These authors obtained,
in addition to the bicellular flow pattern, two other possible two-dimensional
multicellular numerical solutions (with four and six cells) depending on the
initial conditions.

Recent two-dimensional numerical work by Barbosa Mota and Saatdjian[5-
7], using very fine grids, has shown that when R is above 1.75, the transition
from a two-cell to a four-cell flow regime depends on whether the Rayleigh
number is increased or decreased and a closed hysteresis loop is formed
associated with the transition from one flow pattern to the other. For small
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radius ratios (R < 1.75), steady-state flow regimes containing two, four, six and
eight cells are progressively obtained in the porous layer as the Rayleigh
number is increased, but no hysteresis behaviour is observed. The study also
shows that reducing the radius ratio increases flow stability by shifting the
convective effects to higher Rayleigh numbers. The behaviour described above
is in agreement with an earlier study of bifurcation phenomena carried out by
Himasekhar and Bau[8] using regular perturbation expansion techniques and
the Galerkin method. These authors state that for R > 21/4 two solutions remain
stable for some range of Ra above the transitional value; for R < 21/2, the
additional solutions appear via a simple bifurcation process, i.e. one solution
branch loses stability while another one gains it.

In one of the experiments using the Christiansen effect on an annulus of
radius ratio R = 2, Charrier-Mojtabi et al.[9] observed the two-dimensional
bicellular flow pattern when the Rayleigh number was increased up to 250, after
which three-dimensional effects became visible in the upper part of the annular
region. When the Rayleigh number was progressively reduced (cooling phase),
the flow pattern became two-dimensional again and consisted of four
convective cells which persisted until the Rayleigh number reached the
transitional value. This experiment proved the existence of two-dimensional
four-cell flow structures and seems to confirm the hysteresis behaviour
obtained numerically by Barbosa Mota and Saatdjian[5-7].

The observation that the reduction of the radius ratio defers the convective
effects to higher Rayleigh numbers has led to the study of the eccentric
geometry, since it may lead to a reduction of the heat losses. The reason is that
moving the inner cylinder upwards, so that its centre is above the centre of the
outer cylinder, decreases the local thickness of the upper part of the annulus
where the convective effects are stronger, therefore reducing the impact of the
convective heat transfer. On the other hand, the decrease of the gap spacing in
the top part of the layer increases the conductive heat losses. For each pair of
values (R, Ra) there is an optimum value of the eccentricity for which the overall
heat transfer is a minimum.

The eccentric annulus was studied numerically by Bau et al. using both finite
differences[10] and regular perturbation expansion techniques. Using a two-
term regular perturbation expansion Bau[11] investigated three different
geometrical configurations: an eccentric annulus, a buried pipe, and two
cylinders, one outside the other. An extension[12] of the perturbation expansion
for the case of an eccentric annulus, enabled the Nusselt number to be expressed
as a power series of Ra up to O(Ra30). Although the results presented apply for
small Rayleigh numbers only, it is concluded in both studies that the heat losses
can be reduced with respect to the concentric case. In a later study, Himasekhar
and Bau[13] used a boundary-layer technique to obtain a correlation for the
Nusselt number as a function of Ra and the geometrical parameters, valid for a
larger range of Rayleigh numbers.

In the works discussed above, the study of the reduction of the heat losses by
the use of eccentric insulations has been restricted to one flow pattern, the
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two-dimensional bicellular one, which is clearly not the only flow pattern that
can occur in reality. In the parameter ranges (R, Ra) employed in those studies,
both multicellular and three-dimensional flows are physically realizable; these
have higher heat transfer rates than does the bicellular flow, therefore affecting
the optimum value of the eccentricity for a given radius ratio and Rayleigh
number.

In the present work, the accurate finite-difference code used by Barbosa Mota
and Saatdjian[5-7] for two-dimensional convective motion between concentric
cylinders is modified in order to investigate the conditions leading to a heat
transfer reduction by the use of eccentric annuli. Although two-dimensional
studies reduce the generality of the problem, they are computationally
attractive and useful from the engineering point of view. Both Barbosa Mota
and Saatdjian[6, Figure 6] and Rao et al.[3, Figure 10] compared the overall heat
transfer rates predicted numerically with experimental data covering both two-
and three-dimensional flows, and showed that two-dimensional simulations
give a good description of the overall heat transfer in the annulus for a range of
Rayleigh numbers that, although limited, extends past the maximum value of
Ra under which the two-dimensional bicellular flow is the unique flow pattern.

Mathematical model
The system under study consists of a horizontal eccentric annulus, of inner and
outer radii ri and ro, containing a saturated porous medium (Figure 1a). The
cylinders’ surfaces are impermeable and maintained at constant uniform
temperatures T̂i and T̂o, respectively. We focus on two-dimensional phenomena
which are symmetrical about the vertical centre line by considering only inner
cylinder displacement in the vertical direction.

We formulate the problem in the usual bipolar orthogonal co-ordinates (α, β),
also used by Bau[11,12], which are defined by the following transformation:

An example of a bipolar co-ordinate mesh is shown in Figure 1b. There are
other orthogonal or non-orthogonal co-ordinate systems that can be used to
describe the annular region between two eccentric cylinders. For example, in the
study of lubrication in a journal bearing, both Wood[14] and DiPrima and
Stuart[15] employed a modified orthogonal bipolar co-ordinate system that
becomes identical to cylindrical-polar co-ordinates in the limit of concentric
cylinders, whereas Wannier[16] employed a non-orthogonal mixed Cartesian-
polar co-ordinate system. The bipolar coordinate system has the advantage of
mapping the cylinders’ walls to constant α values, αi and αo. Strictly speaking,
this co-ordinate system does not provide for concentric cylinders. In practice
this limitation is not a serious one, since the eccentricity can be decreased as
much as one desires.
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The fluid motion is assumed to be adequately described by the two-dimensional
Darcy-Boussinesq equations, which for the case of inner cylinder vertical
displacement only, are expressed in dimensionless form as:

(1)

(2)

In the above equations, ψ is the stream function, T is the temperature, and

is the Darcy-Rayleigh number. In principle, the centre of the inner cylinder can
be displaced vertically in both directions so that it can lie above (e > 0) or below
(e < 0) the centre of the outer cylinder. For the first case, i.e. positive eccentricity,
the (+) sign is valid in the r.h.s. of (2). Similarly, the (–) sign holds for inner
cylinder displacement in the downwards direction.

Figure 1.
(a) geometrical

configuration of the
problem; (b) bipolar

sample grid for R = 2
and ε = 0.7 
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The boundary conditions on the inner and outer cylinders are, respectively,
ψ = 0, T = 1 for α = α i and ψ = 0, T = 0 for α = αo, and the symmetry
conditions with respect to the vertical axis are

The values of αi and αo are related to the radius ratio R and to the eccentricity
ε by

At steady-state, the total heat flow in the annular region is

(3)

and the global Nusselt number, defined as

(4)

gives the ratio of the total heat transfer to the heat transfer in the absence of
convection.

Numerical solution
The above equations were solved using second-order centred finite differences
on a 101 × 151 (α × β) regularly spaced grid covering half the annular space
since symmetry about the vertical central line was assumed.

The steady-state solutions were obtained by a time marching iterative
scheme based on the alternating-direction implicit method (ADI) coupled with
cyclic reduction. For each iteration (n → n + 1), new temperature values (Tn+1)
were calculated by applying one step of the ADI method to the parabolic
equation (1), using the most recently calculated values of the stream function
(ψn). The latter values were then updated by solving the Poisson equation (2).
The finite difference expression for the first ADI half-step, implicit in the α
direction, is written as

(5)

and the second half-step, implicit in the β direction, is

(6)

where ∆t is the time-step. The finite difference operators Lα and Lβ are defined
by
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and

where ∆α and ∆β are the grid spacings in the α and β directions, respectively.
Subtracting (5) from (6) yields

(7)

which is computationally more efficient than solving (6), since it eliminates the
need to calculate (2h2

i,j/∆t + Lα)Ti,j
n+1/2. In practice the pair of equations (5,7) are

used. The tridiagonal linear systems of equations arising in each half-step were
solved using the Thomas algorithm.

The five-point finite difference approximation of the Poisson equation (2) is

The resulting linear system was solved by a direct method using an efficient
cyclic reduction algorithm[17], implemented in the subroutine GENBUN of the
FISHPACK package[18]. The solver has an asymptotic operation count of
O(NαNβ log2Nα). The reader is referred to Buzbee et al.[19] and
Swarztrauber[20] for further details on the topics of cyclic reduction and other
related methods.

The extra unknowns corresponding to the fictitious grid lines (α, – ∆β) and
(α, π + ∆β) were eliminated using the the symmetry condition, i.e. T(α, – β) =
T(α, β) and ψ(α, – β) = –ψ(α, β), yielding

The use of the ψ values at time tn in the time integration from tn to tn+1, together
with the second-order accuracy of the ADI method, makes the overall time
marching procedure only first-order accurate in time. However, this is not a
serious drawback because we are mainly interested in the steady-state
solutions, and the coupled scheme still retains the strong stability
characteristics of the ADI method.

The calculations were assumed to converge when, for every grid point, the
dimensionless temperature difference between two consecutive time-steps was
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smaller than a tolerance value TOL, set at 10–4 as in Barbosa Mota and
Saatdjian[7]. In terms of the dimensional temperature, this can be written as

where n and n + 1 are any two consecutive time-steps.
In order to calculate the total heat flow, the temperature gradient was

computed at the grid points belonging to the cylinders’ walls, using the
following third-order difference schemes:

The integral in (3) was calculated using the extended Simpson’s rule for α = αi
and α = αo, and the final value of Q was taken as the average of the two
calculated values.

Results and discussion
In order to ascertain the validity of the code, preliminary runs for R = 2 and ε =
0.01 were made, and the results were compared with the available experimental
and numerical data on horizontal, concentric porous annuli. Figure 2 shows the
steady-state global Nusselt number as a function of the Rayleigh number for the
values of R and ε mentioned above. The numerical results predict that the
transition from the bicellular flow regime towards a four-cell flow regime occurs
at Ra = 64, which is in agreement with the experimental value (65 ± 4) obtained
by both Caltagirone[1] and Charrier-Mojtabi et al.[9] for the concentric case. The
Nusselt numbers calculated here differ by less than 1 per cent from those
obtained in previous numerical studies that confirmed the bifurcation
mentioned above for the concentric geometry[3,6,7]. This gives further
confidence in our results.

The two different flow regimes are shown in Figure 3 for Ra = 180. For a
fixed Rayleigh number, the four-cell flow regime has a higher heat transfer rate
than does the bicellular one. This is a consequence of a more efficient fluid
mixing due to the additional counter-rotating cells. For this radius ratio and for
Rayleigh numbers above 115, a third flow pattern containing six cells was
obtained numerically by both Rao et al.[3] and Charrier-Mojtabi et al.[9] using
the Galerkin method. The six-cell flow pattern is not included in this work
because the heat transfer enhancement with respect to the four-cell flow regime
is not high enough to change the conclusions regarding the optimum choice of
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the eccentricity. Moreover, the physical existence of this flow pattern has yet to
be proved experimentally.

Figure 2 was constructed by first determining the steady-state solutions for
successively larger values of Ra using increments of 5. Each successive steady-
state calculation was run using the previously converged solution as the initial
guess. The initial condition for the first run (Ra = 5) was the steady-state
solution of the pure conduction regime (Ra = 0):

At some point in the process the flow pattern changes from two to four cells;
this happens despite the fact that no artificial perturbations were introduced in
the initial condition. However, this transitional Rayleigh number is not
necessarily the minimum one due to a possible hysteresis behaviour of the
solution. The true transitional Rayleigh number is obtained by carrying out the
calculations in the inverse order, i.e. for decreasing Rayleigh numbers, until the
flow transition occurs. The interval containing the flow transition is refined
with extra calculations in order to determine the transitional Rayleigh number
with an accuracy of ±0.25. The unfinished part of the lower branch of the
Nusselt curve is completed by using a bicellular steady-state solution, obtained
previously, as the initial condition for the highest Rayleigh number considered
(Ra = 180), and then carrying out the calculations for decreasing Rayleigh
numbers.

Figure 2.
The global Nusselt

number (Nu) as a
function of the Rayleigh

number (Ra) for R = 2
and ε = 0.01. The lower
and upper branches of

the curve correspond to
the bicellular and four-

cell flow patterns,
respectively
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For R = 2, the influence of the eccentricity on the Nusselt number was studied
by performing the same procedure for different values of ε. The results are
shown in Figure 4. For these runs, the unfinished part of the lower branch of
each Nusselt curve was completed by using, as initial conditions, the bicellular

Figure 3.
Streamlines and
isotherms for R = 2, ε =
0.01, and Ra = 180: (a)
two-cell flow pattern; (b)
four-cell flow pattern.
The streamlines and the
isotherms occupy the
left- and right-hand
sides of the annuli,
respectively
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solutions obtained for the same Rayleigh numbers and the previous ε value. For
ε > 0.5, we were unable to obtain stable bicellular solutions for Rayleigh
numbers above the transition point. For the concentric geometry, Himasekhar
and Bau[8] have shown that for R = 21/2 and R = 2, two solutions remain stable
for some range of Rayleigh numbers, while for R = 21/4 and R = 21/8, the
additional solutions appear via a bifurcation process, i.e. one solution branch
loses stability while another one gains it. Both observations show a similar
trend, this is due to the fact that reducing the radius ratio or increasing the
eccentricity has the same impact on the geometry in the top part of the layer
where the multicellular structures are concentrated.

As the eccentricity is increased, the transition between the two flow regimes
occurs at higher Rayleigh numbers. This is explained by examining the
streamlines for Ra = 100 and ε = 0.1, 0.4, 0.5 and 0.6, shown in Figure 5. If the
Rayleigh number is kept fixed and on decreasing the gap width at the top of the
layer, the secondary counter-rotating cell in each half annulus becomes smaller
and disappears altogether for ε = 0.6. The elimination of the two secondary
counter-rotating cells results in an overall heat transfer reduction. For high
values of ε and for Ra ≤ 180, the gap width in the top part of the layer is very

Figure 4.
The global Nusselt

number (Nu) as a
function of the Rayleigh

number (Ra) for R = 2
and ε = 0.1, 0.2, …, 0.9.

The solid and dashed
lines correspond to the
two- and four-cell flow
patterns, respectively
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small, thus hindering the appearance of secondary cells. In these geometries,
multicellular regimes can occur at very high Rayleigh numbers, the behaviour
is similar to that observed in the concentric case with very small radius
ratios[6].

Figure 5.
Streamlines and
isotherms in the upper
part of the annular layer
for R = 2, Ra = 100, and
ε = 0.1(a), 0.4(b), 0.5(c),
0.6(d). The streamlines
and the isotherms
occupy the left- and
right-hand sides of the
annuli, respectively
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In order to search for an optimum configuration leading to a heat transfer
reduction, the Nusselt curves presented above were converted to total heat flow
curves using equation (4). Figure 6 depicts the overall heat flow rate as a
function of the eccentricity for R = 2 and Ra = 110. As one can see, the lower
branch of the heat flow curve, corresponding to the bicellular flow regime,
clearly presents a minimum located at ε ≈ 0.4. This represents a reduction of 5.7
per cent in the total heat transfer with respect to the same flow regime in a
concentric annulus. However, if the four-cell flow pattern prevails in the layer
then the minimum of the heat flow curve is located at ε = 0.6. For the radius
ratio and Rayleigh number of the figure, this value of ε is the minimum value of
the eccentricity for which the two-dimensional bicellular flow is the unique flow
pattern. For this value of ε, the heat transfer rate presents a reduction of 11.3 per
cent with respect to the four-cell flow pattern in a concentric annulus, and is
slightly lower than the one produced by the bicellular flow regime in the
concentric case. The results suggest that in a real situation annular insulation
with an eccentricity of 0.6 would be more efficient at reducing the heat losses
than one having an eccentricity of 0.4, because the former would be better at
damping the multicellular structures that are responsible for a steep increase in
the heat transfer.

Figure 7 shows, for various Rayleigh numbers, the heat flow rate as a
function of the eccentricity. The results presented here for the lower branch of
the heat flow curve are in good agreement with those obtained by Bau[11,12]

Figure 6.
The total heat flow

(Q/2π) as a function of
the eccentricity (ε) for R

= 2 and Ra = 110. The
solid and dashed lines
correspond to the two-

and four-cell flow
patterns, respectively
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using an extended perturbation expansion and by Bau et al.[10] using finite
differences. The four-cell flow regime was not observed in those calculations,
probably due to a limited radius of convergence of the power series employed in
the perturbation expansion and to an insufficient number of grid points (1,320)
in the finite-difference mesh. For very small Rayleigh numbers, the heat flow
curve is unique and the minimum is located at ε = 0, indicating that for these
cases the concentric insulation is the most efficient one. For Rayleigh numbers
above the transitional value, the heat flow curve is no longer unique, and the
total heat flow can be reduced effectively by an eccentric insulation. The value
of the eccentricity that locates the minimum of the lower branch of the heat flow
curve increases with the Rayleigh number; the same happens with the
minimum value of the eccentricity for which the two-dimensional bicellular
flow is the unique flow pattern. For Ra ≤ 180, the energy savings with respect to
the concentric case are of about 10 per cent, if the eccentricity is properly
chosen.

Conclusions
An accurate finite-difference code was used to solve the two-dimensional Darcy-
Boussinesq equations for an eccentric, horizontal annulus filled with a
saturated porous medium. A mesh containing approximately 15 × 103 grid
points was used in order to capture the secondary counter-rotating cells in the
top of the porous layer. The results obtained for various values of ε ranging

Figure 7.
The total heat flow
(Q/2π) as a function of
the eccentricity (ε) for R
= 2 and various
Rayleigh numbers. The
solid and dashed lines
correspond to the two-
and four-cell flow
patterns, respectively
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from 0.01 to 0.9, show that reducing the radius ratio or increasing the
eccentricity has the same impact on the geometry in the top part of the layer
where the convective effects are more pronounced. This strengthens our belief
that the study of a single radius ratio, which was set at two for the convenience
of comparing with other data, does not remove the generality of the results from
the engineering point of view.

For ε < 0.5, the function Nu(Ra) loses uniqueness for Rayleigh numbers
above a critical value. Both a bicellular and a tetracellular flow patterns remain
stable for the range of Rayleigh numbers studied. For ε ≥ 0.5, the transition from
one flow regime to the other occurs via a perfect bifurcation, i.e. the flow change
occurs with one of the solution branches losing stability. For Ra ≤ 50, the
concentric insulation is the most efficient one for the radius ratio studied. For
moderate Rayleigh numbers, raising the inner cylinder centre leads to a
reduction of the heat flow, the net gain can be of the order of 10 per cent. The
results suggest that in a real situation, insulation is more efficient if ε is set to
the maximum value for which the four-cell flow regime is physically realizable
rather than to the value that minimizes the heat transfer when the flow pattern
is bicellular. Although we studied the case R = 2 and moderate Rayleigh
numbers, the method employed here can be used to investigate any geometry
and Rayleigh number as long as the two-dimensional Darcy-Boussinesq
equations remain valid.
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